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DIMENSIONAL REDUCTION FOR FILTERS WITH TIME-SCALE
SEPARATION

AFOSR GRANT NUMBER FA9550-08-1-0206

N. Sri Namachchivaya and Richard B. Sowers
Department of Aerospace Engineering and Department of Mathematics

University of Illinois at Urbana–Champaign

Abstract
This project outlines a collection of problems which combine techniques of model
reduction and filtering. The basis of this work is a collection of limit theories for
stochastic processes which model dynamical systems with multiple time scales.
Multiple time scales occur in many real systems, and reflect different orders of
magnitudes of rates of change of different variables. These different time scales
often allow one to find effective behaviors of the fast time scales. In systems sub-
ject to both bifurcations and noise (which form one of the main components of this
project), various singular perturbations problems must be understood. When the
rates of change of different variables differ by orders of magnitude, efficient data
assimilation can be accomplished by constructing nonlinear filtering equations for
the coarse-grained signal. We consider the conditional law of a signal given the
observations in a multi-scale context. In particular, we study how scaling inter-
acts with filtering via stochastic averaging. We combine our study of stochastic
dimensional reduction and nonlinear filtering to provide a rigorous framework for
identifying and simulating filters which are specifically adapted to the complexities
of the underlying multi-scale dynamical system.

This is the final report for AFOSR GRANT NUMBER FA9550-08-1-0206,
which was awarded in August 2008 and ended December 2011. This research
involved the work of the PI, N. Sri Namachchivaya, Co-PI, Richard B. Sowers,
and graduate students at University of Illinois at Urbana-Champaign (UIUC) in
collaboration with a graduate student at the Humboldt University, Berlin, Ger-
many.

Introduction

The first objective of current project is concerned with certain methods of dimen-
sional reduction of nonlinear systems with symmetries and small noise [1,2]. In
the presence of a separation of scales, where the noise is asymptotically small,
one exploits symmetries to use recent mathematical results concerning stochas-
tic averaging to find an appropriate lower-dimensional description of the system.
Reduced models can be used in place of the original complex models, either for
simulation and prediction or real-time control. To this end, reduced models [3,4].
often provide qualitatively accurate and computationally feasible descriptions.

The second objective is to derive a low-dimensional filtering equation, that
determines conditional law of a plant, in a multi-scale environment given the
observations. This project is less concerned with specific applications and more
focused on some of the theoretical aspects that deal with reduced dimensional
nonlinear filters. In particular, we showed the efficient utilisation of the low-
dimensional models of the signal to develop a low-dimensional filtering equation.



We combine two ingredients, namely, stochastic dimensional reduction discussed
above and nonlinear filtering [6,7]. We achieved this through the framework of
homogenisation theory which enables us to average out the effects of the fast
variables.

To introduce the basic idea of filtering in a multi-scale environment, let (Ω,F ,P)
be a probability space. We consider nonlinear Rm × Rn-valued signal processes
(Zε, Xε) and an Rd-valued observation process Y ε given by the SDE’s

(1)

dZε
t = ε−1a(Zε

t , X
ε
t )dt+ ε−1/2γ(Zε

t , X
ε
t )dWt, Zε

0 = η

dXε
t = b(Zε

t , X
ε
t )dt+ σ(Zε

t , X
ε
t )dVt, Xε

0 = ξ

dY ε
t = h(Zε

t , X
ε
t )dt+ dBt, Y ε

0 = 0

where W , V and B are independent Wiener processes and η and ξ are random
initial conditions which are independent of W , V and B. Let ε be a small pa-
rameter that measures the ratio of slow and fast time scales. Hence the dynamics
of (1) are separated into two scales, where Zε and Xε represent the fast and slow
variables, respectively. The generator Lε of the Markov processes (Zε, Xε) is then
of the form

(2) Lεϕ = ε−1LFϕ+ LSϕ,

for all ε ∈ (0, 1) and all ϕ ∈ C∞(Rm+n), where LF and LS represent generators
of fast and slow variables.

The main objective of filtering theory is to estimate the statistics of the signal

Xε
t

def
= (Zε

t , X
ε
t ) at time t based on the information in the observation process Y ε

up to time t, that is, on the basis of the sigma-algebra, Y ε
t . More precisely for

each t ≥ 0, we want to find the conditional law of Xε
t given Y ε

t , that is, we want
to compute P{Xε

t ∈ A|Y ε
t } for all A ∈ B(Rm+n). The insight of filtering theory

is that one can construct this conditional measure via a stochastic PDE which is
a recursive equation driven by the observation process.

If the above conditional measure admits a smooth density, pε,X(t, x) with respect
to Lebesgue measure i.e., P{Xε

t ∈ A|Y ε
t } =

∫
A
pε,X(t, x)dx for all A ∈ B(Rm+n),

then uε(t, x), the un-normalised density, solves the Zakai equation

(3) duε(t, x) = L ∗
ε u

ε(t, x)dt+ uε(t, x)h(x)dY ε
t , uε(0, ·) = px,

where L ∗
ε is the adjoint operator of the Lε (with respect to Lebesgue measure on

Rm+n) and Xε
0 has density px.

Since we are interested in the slowly-varying coordinates which usually describe
the essential coarse-grained dynamics, the focus of our work is to estimate the
signal Xε

t at time t on the basis of the sigma-algebra Y ε
t . More precisely for each

t ≥ 0, we want to find the conditional law P{Xε
t ∈ A|Y ε

t } for all A ∈ B(Rn). For

each t ≥ 0, define the C([0, t];Rd)-valued random variable ~Yε
[0,t] as (~Yε

[0,t])s(ω)
def
=
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Yε
s(ω) for all ω ∈ Ω and s ∈ [0, t]. The point of filtering is that for each t ≥ 0 and

ε ∈ [0, 1), there is a measurable map

(4) πε
t : C([0, t];Rd)→P(Rn)

such that for each t ≥ 0 and A ∈ B(Rn), (πε
t (
~Yε

[0,t]))(A) = P{Xε
t ∈ A|Y ε

t }.
Informally, our focus is in the behavior of the filters when system (1) can be

averaged with respect to µx(dz), the unique invariant measure of the fast variable
Zε

t , i.e., L ∗
Fµx = 0. Notice that the dimension of the signal (the coarse-grained

dynamics) is reduced to n. Letting u0(t, x) satisfy the Zakai equation for the
reduced system

du0(t, x) = L̄ ∗
Su

0(t, x)dt+ u0(t, x)h̄(x)dY 0
t ,

one might hope that uε converges to u0. (u0 does not depend on fast variable z.)
As in (4), there is a map

π0
t : C([0, t];Rd)→P(Rn)

such that (π0
t (~Y0

[0,t]))(A) = P{X0
t ∈ A|Y 0

t }. However, we want to use the original

observation Yε instead of Y0 to get a filter for the reduced system since Yε is the
actual data we would obtain. Our main claim [9] is

Theorem 0.1. For each t > 0,

lim
ε↘0

E
[
dP(R)(π

ε
t (·, ~Yε

[0,t]), π
0
t (·, ~Yε

[0,t]))
]

= 0.

Here dP(R) is the standard Prohorov metric on P(R), and the statement is con-
vergence in probability. In other words, if you are only interested in finding the
conditional distribution of the slow variables, you might as well use the averaged
dynamics.

Homogenized Hybrid Particle Filter (HHPF):

Particle methods have a long history; we refer the reviewer to [7] for an extensive
treatment of this area. The basic idea is to replace the expected values of the
quantities in the statement of nonlinear filters, by suitable Monte-Carlo sample
averages. The basic requirements for a particle method are the simulation of
independent samples of the signal, called particles, with the same stochastic law
as the signal, and the re-sampling of these particles to incorporate the information
from the observations.

Our approach described here, not only reduces the computational burden for
real time applications but also helps solve the problem of particle degeneracy. In
the case where the signal solves a stochastic differential equation, the simulation
of each particle’s SDE is usually implemented with discrete time Euler or Miltsein
approximations. The conditional distribution of the signal at the current time t is
approximated by the locations of the particles and their weights, specifically. The
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set of particles are then adjusted in some manner to conform to each observation
by either assigning each particle a scalar weight value, wn

j (t) that is calculated for

the jth particle at (xε,jt , zε,jt ) to account for the information from the observation
up to time t by interchanging the state values associated with each particle in
some manner or by cautious novel branching techniques presented here.

An Illustrated Example:

In this section, we provide some evidence that suggests that the proposed ap-
proaches are likely to work, with sufficient accuracy, in practice. We apply the
HHPF to an example to illustrate its potential for high-dimensional complex prob-
lems.

Consider the following signal model:

Żε
t = −1

ε
(Zε

t−Xε
t )+

1√
ε
Ẇt, Zε

0 = z0, Ẋε
t = −(Zε

t )3+sin(πt)+cos(
√

2πt), Xε
0 = x0

with the observation

Y ε
t =

1

2
(Xε

s )2 +Bt.
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Figure 1. Signal and Observation (left) and HMM solution and
the original Signal (right)
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Figure 2. Full branching particle filter (left) and HHPF (right)
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Figure 1 (left) shows a typical plot for this multiscale system with slow and
fast signals, Xε

t and Zε
t , respectively, and with the observations Y ε

t . We then
applied the algorithms described above to the this problem using MATLAB. Fig-
ure 1 (right) compares the HMM solution with the analytical solution. The results
from the branching particle filter and the HHPF are given in Figures 2 (left) and
2 (right), respectively. The time taken for these simulations are 448 sec. and 15
sec. respectively with a 2 GHZ Intel Core 2 Duo MacBook. The parameters we
have used are: N = 200, M = 2, nT = 10, Nm = 200, δt = 1e − 4, ∆t = 5e − 2,
ε = 1e−3. Here nT is the number of micro time steps skipped to ignore transients
and Nm is the number of micro time steps. These preliminary results are critical
in order to demonstrate that the proposed methods show promise.

The theoretical aspect of data assimilation was accomplished by constructing
nonlinear filter equations for the coarse-grained signal (i.e., the lower dimensional
Zakai equation), as explained in [8, 9]. We showed that a multiscale particle
method could be effectively applied to large dimensional systems. The separation
of time-scales facilitated the construction of the particle filter which allows the
dimensional reduction of the system needed to solve for each particle.

In summary, this novel computational method combined homogenization of ran-
dom dynamical systems, the results of [8, 9] on reduced order nonlinear filtering,
with sequential Monte Carlo methods to reduce the effective number of variables
in the evaluation of the conditional distribution needed in the Bayesian filter for
data assimilation. For computational purposes, the conditional distribution π̄ is
approximated by particle filters; the system of particles is resampled in the ex-
treme cases described in the previous paragraph. It is worthwhile to note that the
convergence results of both stochastic averaging and the branching particle filter
are obtained through the method of the martingale problem. Thus, it is natural
to consider the convergence result of HHPF in the framework of the martingale
problem, which is left for future work.
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